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Volumetric Head-Mounted Display
with Locally Adaptive Focal Blocks

Dongheon Yoo*, Seungjae Lee*, Youngjin Jo, Jaebum Cho, Suyeon Choi, and Byoungho Lee, Fellow, IEEE

Abstract—A commercial head-mounted display (HMD) for virtual reality (VR) presents three-dimensional imagery with a fixed focal
distance. The VR HMD with a fixed focus can cause visual discomfort to an observer. In this work, we propose a novel design of a
compact VR HMD supporting near-correct focus cues over a wide depth of field (from 18 cm to optical infinity). The proposed HMD
consists of a low-resolution binary backlight, a liquid crystal display panel, and focus-tunable lenses. In the proposed system, the
backlight locally illuminates the display panel that is floated by the focus-tunable lens at a specific distance. The illumination moment
and the focus-tunable lens’ focal power are synchronized to generate focal blocks at the desired distances. The distance of each focal
block is determined by depth information of three-dimensional imagery to provide near-correct focus cues. We evaluate the focus cue
fidelity of the proposed system considering the fill factor and resolution of the backlight. Finally, we verify the display performance with
experimental results.

Index Terms—Virtual reality, Head-mounted display, Three-dimensional display, Multifocal display.

F

1 INTRODUCTION

V IRTUAL reality (VR) has been attracting public interests
because it has a variety of applications, including en-

tertainment, trauma treatment [1], education [2], and virtual
training [3]. Over the last few years, people could experience
VR applications via a head-mounted display (HMD). Al-
though the HMD is considered the most promising platform
to realize VR, customers often report visual fatigue after
using HMDs for a long time. For the popularization of VR,
it is important to alleviate the fatigue of HMD.

Vergence-accommodation conflict (VAC) is known as
one of the main causes of the discomfort in HMD [4], [5].
Commercial HMDs stimulate the convergence of binocular
eyes (vergence) to make users perceive virtual objects’ depth
information. The depth perception depends on the degree
of rotation and alignment of both eyes [6]. On the other
hand, HMDs present visual information at a single focal
plane where users’ eyes should focus (accommodation) to
perceive sharp imagery. If a virtual object depth differs from
the focal plane distance, vergence-accommodation conflict
(VAC) occurs. Presenting focus cues in HMDs can mitigate
the VAC, and a recent study demonstrated that supporting
accurate focus cues improved user comfort [6]. Furthermore,
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it was shown that the absence of focus cues distorted the
user’s depth perception [7].

A multifocal display is one of the promising solutions for
HMD with focus cues. The multifocal display floats multiple
focal planes or surfaces physically via spatial [8], [9], [10]
or temporal [11], [12], [13], [14], [15], [16] multiplexing ap-
proaches. These approaches aim to reconstruct continuous
three-dimensional scenes by stacking two-dimensional focal
planes. In multifocal displays, the density of focal planes
determines depth accuracy and optical resolution limit.
However, the number of planes cannot be easily increased.
In general, densely stacking focal planes through spatial
or temporal multiplexing requires the sacrifice of a form
factor or refresh rates. Although there is a computational
approach to improve the depth accuracy by dynamically
moving focal planes according to target scenes [17], [18], it
is still challenging to reconstruct three-dimensional scenes
over a wide depth range using a few focal planes.

Recently, novel approaches were proposed to provide
dense focal planes over a wide depth of field using
focus-tunable lenses (FTLs) and digital micromirror devices
(DMDs) [11], [13], [14]. Notably, Lee et al. [13] utilized the
DMD as a fast and spatially varying binary backlight. The
DMD selectively turned a liquid crystal display (LCD) panel
on and off while the FTL periodically swept a specific depth
range. Nevertheless, it is difficult to realize this concept
in a wearable form factor since the DMD system requires
additional projection or relay optics.

Here, we introduce a compact VR HMD design that
supports near-correct focus cues over an extended depth of
field (from 18 cm to optical infinity). Our design’s distinct
feature comes from the focal block, which denotes a locally
adjustable focal plane. In a conventional multifocal display,
visual information on a multiplexed display panel is directly
projected onto each focal plane, and the focal planes remain
static at specific depths. Conversely, our design divides
these visual data into small blocks and allows each block to

Authorized licensed use limited to: Stanford University. Downloaded on August 11,2020 at 04:31:21 UTC from IEEE Xplore.  Restrictions apply. 



1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3011468, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

move within the depth range. We call the block a focal block.
Note that the local scene geometry in the divided display
window is less complicated than the global scene geometry.
As focal blocks locally fit the three-dimensional scene, the
proposed system shows low depth approximation errors
and high retinal image quality even with few modulations
of the display panel. The provision of near-correct focus cues
can also alleviate VAC related issues.

Inspired by Lee et al. [13], our design comprises a
low-resolution binary backlight, a liquid crystal display
panel, and binocular FTLs. The backlight divides the panel
into blocks of size equal to backlight’s unit pixel size.
While driving the FTLs to sweep system depth range, focal
blocks are floated at the moment of backlight illumination.
Through numerical simulations, we show how focal blocks
can improve the depth accuracy and scene reconstruction
quality. Furthermore, we demonstrate implementation in a
wearable form factor using off-the-shelf products. We use a
light-emitting diode (LED) array and liquid lenses for the
backlight and FTLs to build a proof-of-concept prototype.
Several practical issues due to the low fill factor of the
backlight are discussed. We attempt to address these issues
using optical and computational strategies. Lastly, we con-
duct experiments using the prototype and present results
showing the feasibility of VAC mitigation via accommoda-
tion support. The major contributions of this work are as
follows:

• We introduce a new type of volumetric HMD that ef-
ficiently fits volumetric scenes with locally allocated
focal blocks.

• We evaluate depth approximation of the proposed
display by comparing it with dynamic multifocal
displays for various volumetric scenes.

• We propose a comprehensive decomposition strategy
for volumetric scenes adapted to our system, includ-
ing the configuration of the focal blocks, diffusion
kernel optimization, and LCD image synthesis.

• We implement an HMD prototype composed of a
low-resolution LED array, a high-resolution LCD
panel, and several commercialized liquid lenses. The
experimental results are presented and evaluated in
terms of focus cue fidelity.

2 RELATED WORK

2.1 Near-Eye Displays with Focus Cues
Near-eye displays (NEDs) with focus cues are promising
solutions for VAC mitigation. Focus cues can be supported
via various display methodologies, with each method using
a distinct optical strategy.

Light-field NED [19], [20], [21] aims to reconstruct a four-
dimensional light field that indicates intensities and direc-
tions of light rays. In the light-field NED, reconstructed reti-
nal image varies according to the viewing position. Suppose
that the exit-pupil size of the NED is similar to that of the
pupil of the human eye; then, it can also support focus cues.
Although these NEDs can represent view-dependent effects,
such as occlusion, they suffer from trade-off relationships
between the spatial and angular resolutions.

Holographic NED [22], [23] can also restore a four-
dimensional light field. However, it additionally considers

the diffraction and interference of light, which cannot be
modeled with ray optics. Therefore, a more accurate rep-
resentation of the light field is possible in the holographic
NED. However, holographic NED performances, such as an
exit-pupil size and field of view, are bounded by the number
of pixels of the spatial light modulator. Speckle noise due to
coherent light usage should be addressed as well.

Varifocal and multifocal NEDs concentrate on the di-
rect provision of depth information rather than light field
synthesis. Varifocal NED [24], [25], as the name implies,
dynamically adjusts the imaging distance of a focal plane
depending on the user’s gaze direction. The varifocal NED
is computationally efficient since it does not require com-
plicated rendering algorithms except for depicting artificial
blur. Furthermore, it can also express occlusion optically
with an additional display panel [26]. However, the tran-
sition between multiple depths might be too slow, so that
users may notice focal planes being shifted. Mechanical
devices for shifting can also make the system bulky. Fur-
thermore, precise gaze tracking is required to determine the
distance of the focal plane correctly.

On the other hand, multifocal NED [10], [13] reconstructs
multiple focal planes by spatial or temporal multiplexing.
When using the temporal multiplexing method, it is nearly
impossible to float the focal planes simultaneously. How-
ever, if optical power modulation and image rendering
speeds exceed the flicker fusion rate, users can observe
multiple planes together without noticing the switches
between focal planes. Therefore, the multifocal NED can
represent natural retinal blur caused by depth differences
in the focal planes; a recent study [27] reported that the
retinal blur significantly helped observers identify the depth
order. However, computational loads are substantial when
images on the focal planes are rendered using an optimal
decomposition algorithm [28]. Furthermore, a form factor
and frame rates should be sacrificed in the spatial and
temporal multiplexing approaches.

Recently, several studies [29], [30], [31] proposed NEDs
supporting focus cues in a foveated manner. The acuity
of the human visual system is high in the central region
of the retina and low in the peripheral region, due to the
non-uniform density of photoreceptors. Based on this char-
acteristic, the proposed NEDs concentrated on accurately
reconstructing focus cues in the central area. Akşit et al. [29]
introduced to use freeform optics to create a foveated focal
surface. Kim et al. [30] realized a foveated NED of a "picture
in picture" architecture.

Meanwhile, using a phase-only spatial light modulator,
Itoh et al. [32] demonstrated that NEDs could be utilized to
modify real-world views for vision assistance, such as op-
tical zoom and focus correction. More detailed information
about NEDs can be found in a published survey [33].

2.2 Multifocal Displays with Dense Focal Planes
Recently, multifocal displays generating a lot of focal planes
over a wide depth of field [11], [13], [14] were proposed.
In all these works, FTLs and DMDs were used to achieve
the dense focal planes. While the FTLs swept the system
depth range, binary images on DMDs were updated at high
speeds. However, these displays represented color intensi-
ties in different ways. In the works by Chang et al. [11] and
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Rathinavel et al. [14], the binary images were illuminated by
high dynamic range (HDR) LED light sources. On the other
hand, Lee et al. [13] used an LCD panel to express the color
information of focal plane images. The DMD served as a fast
and spatially adjustable backlight for the LCD panel in their
work.

Our work is closely related to the work by Lee et al. in
that the proposed system replaces the DMD with an LED
array for compactness. Further, we propose modulating the
panel a few times during a single FTL sweeping period.
We demonstrate that this novel strategy can alleviate the
disadvantages of using low-resolution LED arrays, such
as limited depth representation for each focal block and
crosstalk between adjacent focal blocks.

2.3 Multifocal Displays with Adaptive Focal Planes
With the focus-tunable optics, focal plane depths can be
dynamically adjusted in multifocal displays. It was reported
in several works that optimizing focal plane configurations
depending on target scenes improved depth accuracy and
focus cue fidelity [17], [18]. Wu et al. [17] used k-means
clustering to divide the depth distribution of a volumetric
scene into several sets and assigned focal planes to the
center distances of the sets. Wu et al. [18] searched for
the optimal configuration, changing focal plane positions
exhaustively until they obtained the best retinal image qual-
ity. Although the spatial frequency and visual saliency were
additionally considered compared to prior work [17], heavy
computations were required for the exhaustive search.

In this work, we modify the previously proposed ap-
proaches for our system. Instead of computing the retinal
image quality, we extract histograms of the visual saliency
distributions so that both the depth distribution and visual
saliency of a target scene can be considered. Even if our
algorithm does not directly minimize the reconstruction
error, it does not significantly compromise the retinal image
quality. We verify this fact through quantitative evaluations
of the reconstructed retinal images. Overall, our algorithm
effectively decomposes a three-dimensional scene based on
the visually salient regions while maintaining the overall
perceptual quality.

2.4 Displays Using LED Array Backlight
Some previous works used LED array backlights for specific
purposes. Huang et al. [34] employed an RGB LED array as
a backlight for a monochromatic high-resolution display. In
their work, a high-resolution grayscale modulator was com-
bined with a low-resolution RGB backlight to reconstruct
high-resolution full-color images. LED array backlights can
be used to build high dynamic range displays as well [35].
By locally modulating the backlight brightness of a display
panel, the system could have extended contrast and bright-
ness ranges. In this study, we employ an LED array as a fast
and spatially adjustable binary backlight.

2.5 Saliency Extraction
Saliency maps have considerable potential in various appli-
cations, such as image segmentation [36] and object recog-
nition [37]. By modeling the human visual recognition pro-
cedure based on orientations, spatial frequencies, and depth

Fig. 1. Schematic of the proposed HMD consisting of a low-resolution
binary backlight, an optical diffuser, a liquid crystal display panel, and
focus-tunable lenses. The display panel depicts images for focal blocks,
and the backlight switches the panel on and off. The diffuser spreads
light from the backlight. The focus-tunable lenses serve as eyepieces of
the HMD and float the focal blocks at different depths.

distributions of scenes [38], the saliency map extraction aims
to determine visually attractive regions. For the saliency
map generation, various kinds of images can be utilized. A
single two-dimensional RGB image [39] alone could be used
to detect several features, including contrast differences
and orientations. The depth map [40] and light field [38]
can also be used to identify the background information
accurately. In this work, we utilize the algorithm proposed
by Zhang et al., where the all-in-focus RGB image, depth
map, and retinal images with focal blur were used as the
input dataset [40].

3 PRINCIPLE

Table 1 summarizes the main abbreviations that are used to
describe the proposed system in this paper. As illustrated in
Figure 1, the proposed system primarily consists of a low-
resolution binary backlight (LRB), a liquid crystal display
panel (LDP) for color modulation, and several FTLs. We also
insert an optical diffuser to alleviate screen-door effect by
the LRB. The FTLs are used as eyepieces of the HMD.

To understand the working principle of our system, we
examine how each optical component operates over time.
We consider a simple situation in which four numbers
located at different depths are optically reconstructed by
our display, as described in Figure 2. In the example, the
binocular FTLs are driven by analog voltage signals of
1/tF kHz frequency; thus, the optical power of each FTL
continuously changes according to the shape of the voltage
signal. During a single sweeping period of the FTL, the
frame images on the LRB and LDP are modulated (2NP −1)
and twice, respectively.

The LRB locally illuminates the LDP at a specific instant,
and the color image on the LDP is floated at a distance
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Fig. 2. Schematic of the working principle of the proposed HMD. Here, it is assumed that the LRB has 2 × 2 pixels, and two focal blocks are allocated
for each partial display area. A In the proposed system, the focal power Dk of the FTL, which is a reciprocal value of the focal length, is modulated
along the triangular waveform of the tF period. The small horizontal lines on the focal power diagram indicate the timing when the LRB image is
updated. The frame rates of the LRB are calculated to be (1/tF )× (2NP − 1). (B, C) While the FTL sweeps the depth range, the LRB illuminates
the LDP’s partial region so that the focal blocks containing partial images on the LDP can be generated at the moment of illumination. The floating
distance zk is fully determined by the focal length fk, which is controlled according to the focal power diagram depicted in A and illumination timing
tk (k = 1, 2, 3, 4). Note that the LDP is modulated twice during a single sweeping period of the FTL, and the LDP image remains the same during
each half period.

TABLE 1
Summary of abbreviations.

Abbreviation Complete form

LRB Low-resolution binary backlight
LDP Liquid crystal display panel
FTL Focus-tunable lens

DMFD Dynamic multifocal display
PBR Pixels-to-block ratio

determined by the FTL’s optical power. The floated distance
zk is given by the thin-lens equation:

1

fk
=

1

zT
− 1

zk
, (1)

where zT and zk denote the distances of the LDP and virtual
imagery from the FTL for k = 1, 2, 3, 4, respectively; fk is
the focal length of the FTL. As shown in Figure 2B, the red
number 1 and the green number 3 are floated at distances
z1 and z2 at t1 and t2 when the LRB illuminates the upper
left and lower right areas of the LDP image that contains
both numbers. The yellow number 2 and the blue number 4
can be similarly generated at distances of z4 and z3 through
proper illumination timing and location of the LRB.

In our system, the focusing error can be reduced as the
number of focal blocks allocated for each laterally divided
area or the number of LRB pixels across the field of view
increases. For the first case, the system refresh rates should
be sacrificed. Therefore, we focus on how the number of LRB
pixels in each direction NB affects the focusing error of the
proposed design, as shown in Figure 3. If we consider a chief
ray passing through a retinal image sample and the center
of the eye pupil, the focusing error E can be computed as
follows:

Fig. 3. Averaged focusing errors E for 130 volumetric scenes containing
randomly located three-dimensional objects [41]. Our system is sup-
posed to allocate dual focal blocks. The focusing error when the LRB
has 8 pixels in each direction, which corresponds to our prototype’s
specification, is indicated by the black arrow in the figure. The errors of
dynamic multifocal displays (DMFDs) with 4 and 6 dynamic focal planes
are also plotted for comparison.

E(θx, θy) = min
k

∣∣∣D(θx, θy)− D̃k(θx, θy)
∣∣∣, (2)

where D(θx, θy) and D̃k(θx, θy) are respectively the depth
(in dioptric units) of a target scene and a focal block for each
viewing angle (θx, θy) indicated by the chief ray [15]. Note
that the ray intersects with two focal blocks, and k is the
index of the focal block closer to the target depth D(θx, θy).
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Fig. 4. Comparison of focusing errors for DMFDs of 4 and 6 planes, and proposed systems with two focal blocks, LRBs of 8 × 8 and 12 × 12
pixels. For the reconstruction target, virtual scenes (source image courtesy: www.cgtrader.com) are used that resemble real-world environments.
The specifications of the scenes are summarized in Table 2. The focal planes or blocks in the displays are simply allocated using k-means clustering
to concentrate on the intrinsic focusing capability, except for algorithmic influences. The averaged error value E is indicated in the upper right area
of each figure.

TABLE 2
Specifications of synthesized scenes.

Scene Field of view Resolution Depth range

Forest 30◦ × 30◦ 512×512 0.0 D ∼ 4.0 D
Road 30◦ × 30◦ 512×512 0.0 D ∼ 5.5 D
Castle 30◦ × 30◦ 512×512 0.0 D ∼ 4.0 D
City 10◦ × 10◦ 400×400 1.0 D ∼ 3.4 D

To evaluate our system’s focus cue fidelity, we calculate
the focusing errors for various volumetric scenes, as shown
in Figure 3. The black arrow in the figure denotes the case
that closely approximates our prototype specification. The
focal blocks are supposed to be arranged according to the
method proposed by Wu et al. [17]. For comparison, we
also assess the fidelity for different display modes, such as
dynamic multifocal displays (DMFDs) of 4 and 6 planes.
The DeepFocus [41] dataset of 130 three-dimensional scenes
is utilized to calculate focusing errors. In each scene, several
volumetric objects are randomly placed between 0.1 and
4.0 diopter (D). According to the analysis, our prototype,
which uses the LRB composed of 8 × 8 pixels of 3 mm
size, represents the depth information of random three-
dimensional scenes more accurately than the DMFD of 4
planes, but less accurately than the DMFD of 6 planes. To
outperform the DMFD of 6 planes for depth approximation,
the LRB should have at least 10 pixels in each direction
within the field of view.

Furthermore, we investigate the focusing errors for
scenes that closely resemble real-world scenarios, as shown
in Figure 4. Both scenes span from 0.0 D to 5.5 D, and
the mean depth errors for each display are indicated in
the upper right areas of the error images. Interestingly, the
proposed design of NB = 8 achieves a lower mean error
value E than the DMFD of 6 planes for both scenes, in
contrast to the results in Figure 4. This fact is because the
depth variations inside each small patch are smoother than

when using random scenes. Therefore, we expect our system
to be a promising solution to express natural-looking virtual
scenes.

4 SYSTEM DESIGN

In this section, we introduce design methods of the pro-
posed system for the optimal representation of retinal im-
ages. To enhance user experiences, we arrange focal blocks
considering depth distributions and visual saliency of vol-
umetric scenes. Based on the focal block arrangement, we
synthesize images on the focal blocks that can minimize
errors in the reconstructed retinal images.

Additionally, artifacts induced by the diffuser in the
system should be considered for the synthesis. Recall that
we insert an optical diffuser between the LRB and LDP to
avoid the screen-door effect by the LRB. Crosstalk between
the adjacent focal blocks can occur owing to the spread of
light from the LRB, and such effects on image quality are not
negligible. To mitigate the crosstalk, we model the diffuser
behavior by designing a diffusion kernel in the algorithm.
The effects of backlight diffusion on image quality are
investigated by sweeping the design parameters, such as
kernel width and backlight resolution. Finally, we find the
kernel that can achieve optimal image quality for a backlight
with a certain resolution.

4.1 Focal Block Arrangement
Up to this point, we have demonstrated that our system can
reconstruct a volumetric scene using locally adjustable focal
blocks. However, if the depth ranges of local scenes exceed 1
D, one or two focal blocks are not enough to ensure correct
focus cues. Note that the distance of 1 D is recommended
as the distance between adjacent focal planes for natural
accommodation [42]. In this situation, we determine focal
block arrangements by considering the visual saliency of the
target scene. The saliency map indicates where an observer
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Fig. 5. Illustration of focal block arrangement. Our algorithm computes
the probability pi,j(Zk) that a user will focus on a specific depth Zk

in each (i, j)th block region. The depth Zk is one of the NP depths
discretized over the entire depth range of the system. For each block
region, the depth map is segmented into NP depth bins, and each
binned depth map serves as a filtering mask M for a saliency map. The
saliency map S is extracted using an all-in-focus image I, depth map D,
and focal stacks, as in work by Zhang et al. [40]. By summing the filtered
saliency map F over the spatial dimension, the focusing probability is
calculated. Among NP depths, focal blocks are assigned to the depths
with the highest focusing probability.

will be visually attracted within the scenes [38], [39], [40].
We also consider the depth distribution of the scene for
correct focus cues.

Saliency map application for dynamic alignments of
focal planes was introduced by Wu et al. [18]. However, as
the alignments for optimal image quality are obtained using
an exhaustive search, massive computational loads are re-
quired for their method. Furthermore, this technique cannot
be easily adapted to our design as the focal plane images
are rendered using linear depth-blending method [8]. In our
system, the focal block density inside the small patch may be
insufficient for the linear blending method [28]. Therefore,
we introduce a new algorithm for focal block arrangements
to reduce the computational loads and preserve the percep-
tual quality.

In Figure 5, we describe our algorithm pipeline for
the arrangements with an example. The saliency map is
rendered as in work by Zhang et al. [40]. Using the depth
map D and the saliency map S, the probability pi,j(Zk) of
focusing at the depth Zk is computed as follows:

pi,j(Zk) =
∑

(x,y)∈Ai,j

F (x, y; z ∈ Zk), (3)

where Ai,j indicates the (i, j)th block area; k is the index of
the focal plane. The letters i and j are defined as the vertical
and horizontal indexes of the LRB pixels, respectively. As-
suming that the LRB is modulated NP times during a half
period of FTL sweep, the system depth range is divided into
NP bins. Among these depth bins, filtered saliency F (Zk)

TABLE 3
Quantitative retinal image quality results.

Scene Metric DMFD (4) DMFD (6) Proposed (8) Proposed (12)

Forest PSNR 36.42 36.79 38.60 39.86
SSIM 0.9893 0.9899 0.9915 0.9933

Road PSNR 36.25 38.69 38.23 40.10
SSIM 0.9847 0.9916 0.9904 0.9934

Castle PSNR 34.47 37.49 36.92 38.36
SSIM 0.9794 0.9908 0.9880 0.9914

City PSNR 31.53 32.22 35.34 36.17
SSIM 0.9606 0.9683 0.9789 0.9825

Average PSNR 34.67 36.30 37.27 38.62
SSIM 0.9785 0.9852 0.9872 0.9902

for the depth Zk can be defined as follows:

F (Zk) = S ◦M(Zk), (4)

where ◦ denotes the Hadamard product. The binary depth
mask M(Zk) denotes the region located at kth depth bin.
As our algorithm aims to find the most likely depth bins
at which observers focus, focal blocks are assigned in de-
scending order from the depth with the highest focusing
probability.

4.2 Decomposition of Scene into Focal Blocks

Once the focal blocks’ locations are determined, LDP images
should be optimized to reconstruct accurate retinal images
for various focusing states [28]. Assuming that the LRB is
modulated NP times during half a cycle of the FTL sweep,
our system can form NP focal planes composed of block-
wise images. Considering the switching speed of the LED
array used in our prototype, which is empirically found,
we set NP = 20. The retinal images are reconstructed
by focusing light fields generated by the focal planes at a
specific depth. Our algorithm aims to numerically model
the reconstruction using matrix calculations and minimize
the errors in the retinal images.

We describe retinal image reconstruction as the following
form: 

Ĩ1
Ĩ2
...

ĨNR

 =

 P11 P12 . . .
...

. . .
PNR1 PNRNP




L1

L2

...
LNP

 , (5)

where Ĩ∈ND×1
r denotes a vectorized retinal image of ND

pixels given a focusing state index r. The index r varies
from 1 to NR, indicating the number of target focusing
states. Ll

∈ND×1 is a vectorized focal plane image of ND

pixels given a layer index l. The submatrix Prl
∈ND×ND

consists of binary values indicating whether or not a chief
ray, which passes through a point on the Ll to NV viewing
positions, intersects with the focusing plane Ĩr [21]. The dis-
crete viewing positions are sampled inside the eyebox. For
simplicity, we model the human eye as a thin lens system
in this simulation. However, physically accurate eye mod-
els can also be considered in our algorithm by designing
the projection matrix to reflect the non-linear relationship
between accommodation and position. In this case, much
larger computations are required. In experiments, we choose
ND = 470× 470, NR = 20, NV = 7× 7.
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Fig. 6. Comparison of retinal image reconstruction via different display modes. We use various three-dimensional scenes for the simulations, and
the scene properties are summarized in Table 2. A Pixel-wise structural similarity (SSIM) index for each figure is derived from a weighted sum of
the SSIM images for 20 different focusing states. The weight map is estimated by the reciprocal of the circle of confusion (CoC) size. B Examples
of the generated retinal images for the given "city" scene. The enlarged subset images are also provided for detailed comparisons. C Simulation
results showing the effects of pupil misalignments on image quality are presented.
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Fig. 7. Effects of diffusion kernel width and pixels-to-block ratio (PBR) on retinal image quality. A We compute the mean PSNR values of 20 retinal
images for different values of LRB pixels (NB) and standard deviations (σ) of the diffusion kernel. These PSNR values are also averaged over
"road", "forest", and "castle" scenes, and the scene properties are summarized in Table 2. For each scene, the image resolution is set to 128× 128
pixels. All values are then normalized by the maximum PSNR value denoted by the white arrow. B We plot normalized PSNR values against
standard deviations of the diffusion kernel. C Standard deviations for optimal image qualities are plotted against half of the PBR values.

Since focal planes are formed due to LRB illumination
through the LDP, focal plane images can be represented as
shown below:

L1

L2

...
LNP

 =

 B11 B12 . . .
...

. . .
BNP 1 BNPNL




D1

D2

...
DNL

 , (6)

where Dd
∈ND×1 denotes a vectorized LDP image of ND

pixels for the frame index d. NL means the number of LDP
modulations during the single period of the entire system
operation. The NL also denotes the number of focal blocks
for each partial region of LDP. We choose NL = 2 in our
prototype.

Submatrix Bld
∈ND×ND encodes the LRB behavior when

Dd is displayed on the LDP and FTL generates the lth
focal plane. Since we insert a diffuser between the LRB
and LDP, the diffuser behavior, which is modeled with a
Gaussian kernel [34], is also considered in the submatrix
Bld as follows:

Bld(x, y) = G(x− xl, y − yl), (7)

where Bld(x, y) denotes two-dimensional LRB image asso-
ciated with Bld when the LRB pixel of physical location
(xl, yl) is turned on. Gaussian kernel G(x, y) is defined as
follows:

G(x, y) =
1

2πσ2
exp

[
−
(
x2 + y2

2σ2

)]
, (8)

where σ means standard deviation of the kernel.
Overall, we find optimal LDP images by solving the

following problem:

min
D
‖WI−WPBD‖2, (9)

where I represents a set of ground truth retinal images
for NR focusing states. W∈ND×ND is a weight matrix.
The weight matrix can be designed to redistribute errors
between retinal images for different focusing states. We set
the weight matrix as an identity matrix for simplicity, but
finding optimal values for the weights depending on the
specific application can be interesting future work. Since

illumination intensity cannot be less than zero, there exists
a constraint whereby all elements of D should be non-
negative. Therefore, we solve Equation (9) via Simultaneous
algebraic reconstruction technique [43] (SART), which is a
gradient-based optimization method.

After allocating focal blocks and rendering LDP im-
ages, we assess the retinal blur fidelity of our design by
comparing reconstructed retinal images for different types
of multifocal displays. Four computer-generated scenes of
different properties are used for evaluation, and scene prop-
erties are summarized in Table 2. We use the scene called
"city" of a much narrower field of view to investigate the
system performance when a high-resolution environment is
assumed. Although the actual distance ranges where virtual
objects are located differ from each other, all scenes are
supposed to be extended from 0.0 D to 5.5 D. Therefore,
focal blocks are not allocated between the actual range of
the utilized scene, but between the system depth range.

The retinal image quality is quantitatively measured in
terms of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) index [44], as shown in Table 3. The
averaged PSNR values over entire focal stacks for each scene
are derived from the weighted sum of mean square errors.
The weight image is estimated by the reciprocal of the pixel-
wise circle of confusion (CoC) map c, which is defined as
follows [41], [45]:

c = P
dr
da

∣∣∣∣1− da
ds

∣∣∣∣ , (10)

where P and dr denote pupil size and distance between
the retinal plane and the crystalline lens of the human eye,
respectively. They are assumed as 6 mm and 25 mm. da and
ds mean accommodation and stimulus distances. Similarly,
SSIM values in Table 3 are computed by averaging pixel-
wise SSIM images as demonstrated in Figure 6. Overall,
averaged metric values for all scenes are calculated for each
display method.

Meanwhile, pupil misalignment may occur inside the
eyebox and degrade retinal image quality. Since our de-
composition algorithm samples different viewing positions
and considers light rays from them, the proposed system
has some tolerance for pupil movement compared to other

Authorized licensed use limited to: Stanford University. Downloaded on August 11,2020 at 04:31:21 UTC from IEEE Xplore.  Restrictions apply. 



1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3011468, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 8. Implementation of hardware prototype. A Photograph of the pro-
totype. The display unit, which consists of an RGB LED array, an optical
diffuser, and an LCD panel, is placed behind focus-tunable lenses. All
components are packaged inside the frame. B Captured point-spread
function (PSF) maps for different focal settings of the camera. White
arrows in the photographs indicate focused points. It is demonstrated
through the PSF maps that focal blocks can be freely located between
20 different distances. The distances are sampled uniformly from 0.0 D
and 5.5 D (∼18 cm).

display modes, as shown in Figure 6C. Note that the pupil
size is set as 6 mm in the simulation.

According to the results in Table 3, the proposed design
with two focal blocks and LRB of 8 × 8 pixels shows better
retinal image quality than DMFD of 4 planes for all scenes.
However, DMFD of 6 planes fits "road" and "castle" scenes
better than the proposed design with LRB of 8×8 pixels. Al-
though the design can closely follow the depth information
of both scenes, as shown in Figure 4, the crosstalk between
focal blocks deteriorates resultant image qualities. Dividing
display area more finely can further increase the retinal blur
fidelity, and we numerically verify that the design using
LRB of 12× 12 pixels can adapt to all scenes with sufficient
image qualities. Note that we use the LRB of 3 mm pixel
size for our prototype so that 8× 8 LRB pixels are included
in the field of view. In order for 12 × 12 LRB pixels to be
included, LRB of 2 mm pixel size should be used.

4.3 Optimizing Backlight Diffusion

Our system utilizes an optical diffuser to smooth out the
screen-door effect by LRB. However, the backlight diffusion
induces crosstalk between adjacent focal blocks. Since it can
significantly distort the depth information of reconstructed
scenes, diffusion kernel width, which is modeled by a
standard deviation of Gaussian function, should be well
adjusted for optimal retinal image quality.

Previously, Huang et al. [34] created a system that also
exploited low-resolution LED backlight with color informa-
tion and a high-resolution grayscale modulator to generate

a high-resolution display. In the prior work, Huang et al.
investigated the effects of two parameters on the rendered
image quality: the ratios between unit pixel sizes of the
backlight and the grayscale modulator, and the diffusion
kernel width. The effects are evaluated through errors in
reconstructed images, and the errors are computed by
sweeping both parameters. However, the results cannot be
identically applied to our design as the goals of both systems
are different. More specifically, our design does not aim to
reconstruct two-dimensional scenes but volumetric scenes.

Therefore, we analyze the effects of pixels-to-block ratio
(PBR) and diffusion kernel width on retinal blur fidelity, as
shown in Figure 7. The PBR is defined as the ratio of the
pixel size of LRB to that of LDP. The NB values of 8 and
12 in Figure 7B correspond to the half of PBR values of 8
and about 5.33, respectively. Obviously, PSNR values are
observed to be significantly low when standard deviations
are much less than half of the PBR values. This fact is due
to the perceivable artifacts of pixelated LRB structure.

A key observation from these results is that both param-
eters should be similar for optimal image quality. According
to the prior work [34], a standard deviation value close
to the given PBR value results in moderate image quality.
However, the kernel width has a significant impact on our
design as the crosstalk between the focal blocks affects the
point-spread functions (PSFs) of different focusing states.
Considering these results, we manually set the standard
deviation of the diffusing kernel to about 33 LDP pixels.
This number of pixels is close to half the PBR value (∼29
pixels) in our prototype.

5 IMPLEMENTATION AND RESULTS

We built a compact proof-of-concept HMD prototype to
demonstrate the feasibility of our design. All the com-
ponents of our prototype are commercially available and
packaged within a 3D-printed frame, as shown in Figure 8.
In this section, we elaborate on the specifications of our
prototype in terms of hardware and software.

5.1 Hardware

For binocular eyepieces, liquid lenses from Optotune (EL-
10-30-TC-VIS-12D) that can change foci from 8.3 D to 20
D are used. Each lens has a 10 mm aperture and can be
driven by an external analog voltage signal at a speed
of 60 Hz [13], [46]. The driving circuit board adapted for
lens operation (Optotune USB Lens Driver 4) is also used.
When the lens is driven using an external voltage signal,
the lens changes the focal power according to the shape of
the signal. We generate a triangular voltage signal using the
data acquisition (DAQ) board from National Instruments for
the lens operation and apply it to the lens driver. Note that
it was reported in [14] that there was negligible difference
in system operation when using triangular and sinusoidal
voltage signals. Overall, the FTLs sweep between 0.0 D and
5.5 D in our prototype.

We use a Topfoison TF60010A LCD panel with a res-
olution of 2560 × 1440 pixels. The maximum frame rate
of the panel is restricted to 60 Hz. Owing to the limited
LCD modulation speed, the FTLs and LCD are driven at 30
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Fig. 9. Schematic showing synchronization of the active components
of our prototype. The starting points of all components are equally
matched based on the 3-D stereo voltage signal from the graphic card.
For LED backlight illumination, two Arduino boards are utilized. The first
Arduino outputs 8×40 square pulses during a single period of the stereo
signal, and the pulses indicate the moment of turning on the backlight.
The second Arduino drives the LED array with several voltage signals
designed according to the manufacturer guidelines. According to the
stereo signal, the DAQ board generates a lens driving signal so that
the FTLs operate in phase with other components.

Hz and 60 Hz, respectively. The LCD panel is modulated
twice during a single operation period of the FTLs. We
use an NVIDIA Quadro P4000, which can output a 3-D
stereo voltage signal to precisely synchronize the display
components. Although the brightness may differ from the
desirable case of 120 Hz modulation, there is a negligible
difference in performance in synthesizing the volumetric
scenes. Furthermore, because the display panels with frame
rates higher than 120 Hz are already commercialized, we
expect it to be sufficiently plausible to realize our design for
60 Hz operation.

For the backlight unit, a 32 × 64 RGB LED matrix
of 3 mm pixel pitch from Adafruit is adopted (Adafruit
Product ID 2279). Although the LED matrix is meant to
be driven with pulse width modulation (PWM) for bitwise
color representation, it is possible to use the matrix as a fast
switching binary backlight without PWM for the prototype.
Our prototype sequentially floats 20 focal planes, so the
LED matrix modulates the frame image at a speed of 20
times the refresh rate of the LCD. We use two Arduino DUE
microcontroller boards for running the matrix. The active
display components operate in synchronized states as the
starting points of the external driving signals are precisely
matched to the 3-D stereo signal from the graphic card;
Figure 9 briefly explains the synchronization method of all
the components in the prototype.

Holographic diffuser with a 60◦ diffusing angle (Ed-
mund Optics) is inserted between the LED matrix and LCD
panel to smooth the edges between the LED pixels. The
diffuser and LED matrix are about 3.5 mm apart to achieve
a Gaussian kernel with a standard deviation of 1.7 mm (33
LCD pixels). The final display region consists of 8 × 8 LED
pixels and 470× 470 LCD pixels, which constitutes an area
of about 1.36 inches diagonally. Each FTL is located 50 mm
from the display unit. The monocular field of view of our
prototype is about 35◦ diagonally, assuming an eye relief of
14 mm.

5.2 Software
We used computer-generated volumetric scenes rendered
using Blender 2.76 in this work. The source of each scene

is marked herein, and perspective color intensities and
depth maps are extracted using Blender 2.76. We assume a
pupil diameter of 6 mm supposing the situation of view-
ing a bright monitor. The 7 × 7 perspective images are
sampled from uniformly distributed viewpoints inside the
pupil. Twenty retinal images for different focusing states
are depicted by refocusing the multiview images [47]. The
optimized intensity profiles on the LCD are rendered using
a PC with two Intel Xeon Bronze 3104 1.70GHz CPUs with
384 GB RAM. Two LCD frames are synthesized using CPU-
only implementations and are optimized to reconstruct 20
retinal images correctly; we empirically determined that the
optimization required about 150 iterations to converge for
each volumetric scene. The optimizations of the two LCD
images with RGB color required an average of 62 min for
the 150 iterations.

5.3 Calibration
To ensure that our system supports 20 different focal states
correctly, we capture each focal plane separated by about
0.37 D using an 8.9 megapixel camera from FLIR (GS3-U3-
89S6C-C) and an FTL of 16 mm aperture, which can change
the focal power from -10 D to 10 D (EL-16-40-TC-VIS-20D,
Optotune). As the lens adjusts the focal length depending
on the applied current, we first measured several current
values for different imaging distances. Then, we fitted these
samples into the mapping functions that convert imaging
distance to the current value. We refined driving signals of
FTLs, considering the phase delay between lens operation
and the signal by manually imaging focal planes with the
calibrated lens. We found that the FTL operation and driving
signal were out of phase by 25◦, which corresponds to
33.33 × 25

360 = 2.31 ms. The computed phase delay was
similar to the value in work by Rathinavel et al. [14] (2.38
ms). After calibration, we verified the focusing capability
of the proposed system by capturing PSF maps, with each
point denoting a different distance, as shown in Figure 8.

5.4 Experiment Results
In Figure 10, we present experimental results compared to
the simulation results. The retinal images are numerically
synthesized based on the prototype specifications. Before
the experiment, the target volumetric scenes were decom-
posed into two LCD images and 2 × 20 LRB images. The
LCD and LRB images were combined to generate 2× (8×8)
focal blocks. As seen in the figure, our system reconstructs
three-dimensional scenes over a broad depth of field. Pho-
tographs of the results were captured using an 8.9 megapixel
CMOS camera from FLIR (GS3-U3-89S6C-C) and f/1.4 C-
mount lens of 16 mm focal length (TUSS LYM1614, entrance
pupil size of 11.4 mm).

6 DISCUSSION

6.1 Limitations
The retinal blur fidelity of our system depends on the
scene properties since the system tries to fit local scenes
with few focal blocks. Although our design reconstructs the
depth information better than the DMFD of 6 planes when
target volumetric scenes resemble the natural environment,
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Fig. 10. Experimental results for our prototype. (A, C) Frame images of the LCD panel and LRB for computer-generated scenes of "road" and
"castle". In the experiment, the images labeled as "1st" are displayed during the first half period of FTL sweep, and the images labeled "2nd"
are displayed during the second half period. Among the 20 LRB images for each set, the upper left and lower right images represent the LED
illuminations when the nearest and farthest focal planes are floated. (B, D) Comparison between numerical simulation results and captured results:
the white arrows denote the focused object for the provided camera setting.

the relationship is reversed when reconstructing scenes of
various objects arranged in a stochastic manner. As shown
in Figure 3, this scene dependency can be reduced if an LRB
with smaller pixels is used.

The diffuser to alleviate screen-door effect could increase
the depth errors because of the crosstalk between adjacent
focal blocks. We show through numerical simulations that
the crosstalk can be alleviated by optimizing the diffusion
kernel width. Meanwhile, Akşit [48] demonstrated an ap-
proach to improve the pixel fill factor by spatiotemporal
means using an optical scanning mirror. As their structure
is similar to our system, except for the scanning mirror, the
concept could be considered as an alternative solution to
improve the backlight fill factor of our system. Furthermore,
Sitter et al. [49] proposed a carefully crafted diffractive film
instead of a diffuser to increase the fill factor; this scheme
could be easily applied to our system by replacing the
diffuser with the diffractive film.

The vertical scanning method also sets a practical limit
for the depth errors within each focal plane. However, if
the refresh rate of the backlight exceeds a particular value
and the maximum depth error within the focal plane is less
than 0.3 D, the perceptual difference from the ideal case
is negligible. Note that the depth of field of the human
eye is known to be around 0.3 D under normal viewing
conditions [50]. Alternatively, we can remove the errors

using a backlight array of active matrix [48].
The real-time operation of our system is difficult due to

the computational load for optimization. The timeline for
optimization mainly involves extracting the visual saliency
and rendering the LDP images. For the saliency map cal-
culation, the required time could be further reduced, as
reported in a prior work [51]. For the LDP image rendering,
a convolutional neural network (CNN) could be applied to
our system. The real-time rendering techniques using CNN
for various three-dimensional displays were discussed by
Xiao et al. [41].

The limited aperture size of the FTL serves as a barrier to
the field of view. However, the field of view could be further
expanded by utilizing a liquid lens with a 16 mm aperture
(EL-16-40-TC-VIS-5D, Optotune). The operating frequency
should be adjusted to about 50 Hz for the wide lens based
on the trade-off relationships between aperture size, focal
power range, and settling time.

6.2 Future Work
Using CNNs not only reduces the rendering time of LDP
images but also can improve our system’s perceptual qual-
ity. Recently, it was proposed to use neural networks for
measuring the perceptual distortions of images since the
typical image metrics, such as PSNR and SSIM, often fail
to reflect the characteristics of human perception [52]. The
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decomposition algorithm considering the movement of the
eye pupil [10], [53] could also be applied to our LDP
rendering algorithm to expand the effective eyebox. Lastly,
the algorithm for focal block arrangements can be improved
based on user studies. It would also be useful to determine
optimal arrangements for different applications given a
large dataset of visual saliencies [29].

7 CONCLUSION

A commercialized VR HMD floats a single focal plane at a
fixed distance. However, vergence-accommodation conflict
can occur due to the single focal plane, which causes an
observer’s visual fatigue. In this paper, we proposed a
novel design of VR HMD supporting near-correct focus cues
over a wide depth of field (from 18 cm to optical infinity).
The proposed design could be realized in a wearable form
factor using a low-resolution binary backlight, an LCD
panel, and several focus-tunable lenses. We demonstrated
through numerical simulations and experiments that a few
locally adaptive focal blocks could accurately reconstruct
various volumetric scenes. We also built a proof-of-concept
prototype using off-the-shelf products to verify the feasibil-
ity of the proposed design. We believe that the proposed
system could inspire further developments for compact and
accommodation-supporting VR HMDs.
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