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Abstract: There have been many recent developments in 3D display technology to provide
correct accommodation cues over an extended focus range. To this end, those displays rely on
scene decomposition algorithms to reproduce accurate occlusion boundaries as well as retinal
defocus blur. Recently, tomographic displays have been proposed with improved trade-offs of
focus range, spatial resolution, and exit-pupil. The advantage of the system partly stems from
a high-speed backlight modulation system based on a digital micromirror device, which only
supports 1-bit images. However, its inherent binary constraint hinders achieving the optimal
scene decomposition, thus leaving boundary artifacts. In this work, we present a technique for
synthesizing optimal imagery of general 3D scenes with occlusion on tomographic displays.
Requiring no prior knowledge of the scene geometry, our technique addresses the blending issue
via non-convex optimization, inspired by recent studies in discrete tomography. Also, we present
a general framework for this rendering algorithm and demonstrate the utility of the technique for
volumetric display systems with binary representation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since augmented reality and virtual reality emerged as one of the most promising next-generation
displays, we have been observing unprecedented rapid growth of 3D display industries. There
have been several efforts for realizing an ultimate 3D display system to deliver immersive and
realistic experience to users. Among the candidates, head-mounted displays (HMDs) have been
settled down as a competitive platform that allows users to experience augmented reality and
virtual reality. However, commercially available HMDs have a limitation in providing accurate
focus cues. Because the physical focal plane of ordinary HMDs is fixed on the specific depth,
users may experience vergence-accommodation conflict (VAC) which may involve visual fatigue
and prevent immersive experience [1].
To provide accurate focus cues for mitigating VAC, several display systems for HMDs have

been explored and studied. Recently, volumetric displays with dense focal stacks were introduced,
which employ a digital micromirror device (DMD). Combining DMD projection system with
a liquid crystal display (LCD) panel [2] or a high dynamic range light emitting diode [3, 4],
the prototypes generate a large number of focal planes without the significant degradation in
frame rate or bit-depth. These prototypes may provide users with accurate and continuous
focus cues along the wide depth range. Especially, tomographic displays have shown superior
performance in resolution and exit-pupil, compared to other candidates for HMDs with focus
cues. Nevertheless, the representation of occlusion boundaries in volumetric scenes has been
pointed out as a distinct drawback [2].
Since focal plane images of volumetric displays are synthesized via addition, users may

notice artifacts at occlusion boundaries of 3D scenes. For multi-plane displays that also suffer
from similar limitation, various computational approaches have been introduced to alleviate the
occlusion boundary artifacts [5–16]. For instance, we can find optimal focal plane images by
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solving a least squares problem that minimizes errors between ground truth and reconstructed
retinal or pupil view images. This method, however, is not applicable for volumetric displays
because of a distinct optical principle involved by the DMD system. When the DMD projection
system is applied, focal plane images are determined by binary states. Therefore, determination
of focal plane images has a binary constraint so that we need to solve a binary least squares
problem.

The binary least squares problem is categorized as non-deterministic polynomial-time hardness
(NP-hard) problem, which requires more complicated algorithm to solve [17]. Lee et al. presented
an algorithm for their system to mitigate occlusion boundary artifacts, which solves relaxation
of the binary least squares problem [2]. However, the convergence and the performance of
the algorithm are sensitive to an initial condition which is determined by 3D information of
reconstructed scenes: It uses in-focus color images and depth maps from tens of viewpoints to set
the initial condition. Additionally, the algorithm is not applicable for other volumetric displays
that have similar binary constraints. In summary, we note that the binary least squares problem
for volumetric displays has not been solved using a stable and adequate algorithm.
Here, we introduce a non-convex optimization algorithm that has advantages in stability and

versatility. Our algorithm was inspired by previous researches related to discrete tomography
that solves the binary least squares problem for reconstruction of volumetric samples [18–26].
The algorithm can be applied for most volumetric displays using binary modulation to present
realistic volumetric scenes [2–4]. Furthermore, the convergence of the proposed algorithm has
tolerance for the initial condition. In this study, we first explore the principle of tomographic
displays and theoretical background of discrete tomography related to the proposed algorithm.
Second, our algorithm is thoroughly analyzed and compared with the related approaches in
terms of the convergence, accuracy, and optimization time. In conclusion, we demonstrate the
versatility by applying our algorithm to various applications. We believe our work can extend the
potential of tomographic display systems.

2. Background

Prior to proposing away to explore an optimal set of display and backlight patterns for tomographic
displays, we need to elaborate on the system and related algorithms. First, we introduce the
concept of the tomographic displays. We elucidate the current limitations of tomographic displays,
which comes from its unique structure. We would like to overcome the limitations by combining
techniques proposed in 3D displays and tomography. Thus, we examine algorithms used for
blending on other displays and for reconstruction in discrete tomography (DT) subsequently.

2.1. Tomographic display

Tomographic displays [2] consist of focus-tunable optics (FTO, e.g., focus-tunable lens), a
display panel (e.g., LCD or spatial light modulator (SLM)), and fast spatially adjustable backlight
(FSAB, e.g., DMD). It uses the temporal multiplexing method with synchronization of FSAB
and FTO to construct 3D scenes. Specifically, the focus-tunable lens modulates its focal length
in the single cycle (e.g. 60Hz) so that the presentation plane sweeps a certain range of depth.
Simultaneously, the DMD illuminates a designated pixel at the appropriate moment, and thus
allows the corresponding pixel of the display panel to represent the depth information. Since the
RGB image is fixed during the single cycle, focal planes of a tomographic display are correlated
with each other. In other words, its binary backlight sequences share the identical RGB image of
the display panel.
Figure 1 describes how it depicts a volumetric scene. ‘Binary blending’ technique, which is

introduced in Lee et al.’s work, turns on each pixel of FSAB at an appropriate moment with given
depth-map information. However, since tomographic displays operate via additive manner, this
rendering technique produces artifacts at occlusion boundaries as shown in Fig. 1(a). These
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Fig. 1. Principle of tomographic displays. A tomographic display depicts a 3D scene
by synchronizing fast spatially adjustable backlight and a focus-tunable lens. (a) When
it renders the scene based on its depth information (binary blending), users may notice
boundary artifacts since it merges the planes in an additive manner. It can be moderated
with a scene decomposition algorithm (b) using SART; but there still remain some defects
(red arrow), (c) using non-convex optimization algorithm. (d) The ground truth.

artifacts occur because users may notice the misalignment of voxels with depth discontinuity
when they shift the viewpoint, and time-multiplexing allows light from a rear plane to pass
through front planes as illustrated in Fig. 2. One can conceive of applying optimal blending
techniques of multi-plane or light-field displays to our system [6–15], but they are not appropriate
since the variables for our problem are restricted by binary constraints of DMD, which makes it a
general NP-hard problem.

Fig. 2. Illustration of artifacts which occur in tomographic displays. (a) As the viewpoint
shifts, the user may notice black artifacts through the gap between voxels. (b) In real
environment, the light from a rear plane is blocked by front objects. (c) In additive 3D
displays, each plane cannot conceal the light from real planes.

2.2. Related algorithms

Previous techniques on optimization for 3D displays implicitly employ a least squares formulation
to recover its volumetric signal from its known linear projections. Since this problem is very
similar to that of computed tomography (CT), tomographic perspectives on 3D displays have
been introduced with the simultaneous algebraic reconstruction techniques (SART) [27] for the
light-field reconstruction [11, 12, 28].
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2.2.1. SART-based algorithms

The algebraic reconstruction techniques (ART) are a large family of reconstruction algorithms
for solving y = Ax in an iterative manner [29]. The SART, which adds longitudinal weighting of
the correction terms to the standard ART algorithm, has shown to rapidly converge to a solution
among other implementations and has had a major impact in CT applications. It has also been
widely used in recovering light-field on 3D displays with multi-layer architectures [6, 9, 11–13].

However, SART shows limited performance when the system is poorly conditioned [6]. In
tomography, it corresponds to reconstruction from a small number of projections. To solve this
problem, many reconstruction algorithms have been proposed based on the assumption that
unknown values are sparse or are made up of only a few gray levels [18–26]. Among the various
models, the discrete algebraic reconstruction technique (DART) has been proposed as an effective
reconstruction algorithm by alternating iteratively between continuous steps using SART and
discretization steps exploiting prior knowledge [20, 21].

2.2.2. The first-order primal-dual algorithm

Since it is not only poorly conditioned but also binary constrained, applying a gradient based
algorithm such as SART is not suitable to solve the integer programming problem for DMD.
In binary tomography, which is a special case of DT, this problem has been addressed with
graphical models, a level-set method, and difference-of-convex (DC) programming [22–26].
The most straightforward idea is to supplement the objective function with a term enforcing
binary solutions. To deal with the concave penalty term, a primal-dual sub-gradient algorithm is
proposed, decomposing the objective functional [22]. Also, we note that a frequency-domain
approach via primal-dual hybrid gradient algorithm (PDHG) is presented for optimizing multi-
plane displays [6]. PDHG is a preconditioned version of the first-order primal-dual algorithm
which applies to saddle-point problems of the form:

min
x

max
y

g(x) + 〈Kx, y〉 − h∗(x), (1)

where g and h∗ are convex and lower-semicontinuous (LSC) functions and the map K: X → Y

is continuous linear operator. h∗ denotes the convex conjugate of a function h. It is shown that
Eq. (1) is equivalent to minimizing g(x) + h(Kx) [30]. This algorithm solves efficiently a large
family of convex problems arising in image processing and computer vision. We refer to [30] for
this vast literature of saddle-point methods. Furthermore, this scheme can be extended to more
general form of minimizing the sum of three convex functions

min
x

f (x) + g(x) + h(Kx), (2)

where f is convex with β-Lipschitz gradient term. A wide range of problems in image and signal
processing, statistics and machine learning can be formulated into this form as many studies have
been carried out to solve these problems [30–35].

2.2.3. Proximal alternating linearized minimization (PALM)

While the algorithms introduced above only deal with convex functions, many optimization
problems are often non-convex. It has been suggested that primal-dual first-order methods
including alternating direction method of multipliers (ADMM) and PDHG can easily be extended
to solve non-convex optimization problems [36]. Besides, the proximal alternating linearized
minimization (PALM) [37] considers non-convex, non-smooth problems of the form:

min
x,y
Ψ(x, y) := F(x) + G(y) + H(x, y), (3)
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where H is smooth and the gradient of itself in each block-variable is globally Lipschitz continuous,
while F,G are non-smooth, LSC, and possibly non-convex with two-block variables x and y. It
can handle more than two-block variables with simple functions Gi [38]. This algorithm is based
on a proximal regularization of alternating minimizations combined with a forward-backward
splitting. For the objective function which has a Kurdyka-Lojasiewicz (KL) property, the
convergence to some critical point is shown regardless of the initialization while the critical point
depends on initialization [37].

3. Overall optimization strategy

Recall that obtaining optimal representation on tomographic displays is very challenging since
it includes the binary optimization problem, which is in general NP-hard. In this section, we
thoroughly describe this problem and divide it into sub-problems.

3.1. Notation

In the following sections, we will use the following notational conventions for clarity. We write
column vectors in boldface (e.g. x) and matrices/tensors in upper-case (e.g. K). Element-wise
multiplication (or the Hadamard product) of signals is denoted by x ◦ y. The | · | symbol
denotes the `1-norm, while ‖ · ‖ denotes the `2-norm, which for signals are ‖u‖ = (

∑
u2
i )

1/2 and
|u| = (

∑
|ui |). [·] denotes the nearest integer function (or rounding) of a real number. PS(·)

denotes the projection onto a set S. A set of binary vectors of size M is denoted by BM = {0, 1}M .
Also, we define a set SB and the indicator function δS(x) for a closed set S as follows:

SB := {Y ∈ BMN2×2 : Yi1 + Yi2 = 1, f or i = 1, · · ·MN2}, δS(x) =

{
0 i f x ∈ S
∞ otherwise

. (4)

S[0,1] is defined similar to SB. The proximal operator of a function f : Rm → R is defined as
proxγ f (v) = argmin

x
γ f (x) + 1

2 ‖x − v‖2, where γ > 0 and v ∈ Rm.

3.2. Focal plane reconstruction via multi-view based optimization

In this paper, we assume a tomographic display that supports M focal planes with N × N
resolution. Then, we can define following decision variables:
• u ∈ [0, 1]3N2 as the RGB image with N×N resolution, collapsed into a single vector. It can be

considered as 3 gray scale images u = [ur ; ug; ub]. For simplicity, we suppose a monochromatic
(e.g. red) image ur instead of u in the following sections.
• x as the binary backlight image vector which is made up of M binary images [x1; x2; ··; xM ],

each of which has the resolution of N × N .
• z = [z1; z2; · · · ; zM ] as the unknown optimal focal plane images that are given by the

element-wise multiplication of x and uM , where uM is a column vector containing M copied of
ur in row dimensions.

We optimize these parameters with target images from distinct viewpoints, which shows similar
performance with that of focal-stack decomposition methods [6–8] when the configured exit-pupil
size is equal to the pupil diameter [2, 15]. This approach has advantages in terms of memory
and speed [39]. This can be interpreted as a tomographic reconstruction of 3D images from 2D
projections [11,18–21,29] . Note that our following approach is still valid for retinal optimization
using the least squares formulation and can be extended to stereoscopic displays [7–9]. We can
derive the inverse problem for multi view-based optimization as in previous studies [2, 9–14]
with the cost function:

minimize
u,x

‖Az − tb′‖2, s.t . z = uM ◦ x, 0 ≤ uM ≤ 1, x ∈ BMN2
. (5)
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Here, we define:
• A ∈ Rk2N2×MN2 as the sparse projection matrix from M focal layers to k × k perspective

view images.
• t as a number of times backlight was activated during a single cycle. It implies brightness as

well as degrees of freedom of backlight illumination for our optimization scheme.
• b′ = [b′1; b′2; · · · ; b′

k2 ] ∈ R
k2N2 as a set of target perspective view images. We assume that

each of the view image has the same resolution with a focal plane for simplicity. We will use b
instead of tb′ for simplicity in the following sections.
Since we have to solve Eq. (5) on ur and x, we follow a general alternating least squares

(ALS) approach, inspired by previous work [2]. To do so, we use some matrix factorization for
the derivation of the least squares problem on each vector ur and x: z, which is the Hadamard
product of uM and x, can be represented by a multiplication of a vector by a matrix as

Az = A(uM ◦ x) = AUx = KUx, (6)

= A(x ◦ uM ) = AXur = KXur . (7)

By replacing z in Eq. (5) with Eqs. (6) and (7), we can bring up sub-problems for ur and
x respectively. We update each variable in an alternating manner, by fixing one variable and
optimizing for the another. The overall scheme for our system is described in Algorithm 1. See
the next section for a more detailed description of optimization methods for the sub-problems.

Algorithm 1: Overall optimization scheme for tomographic displays
1 set u as the RGB image from the center viewpoint, x using binary blending;
2 for n = 1, 2, · · · , ... maxIter do
3 if n ≤ maxIter_backlight then
4 - update backlight with fixed u; using Algorithm 3 (Section 4.2)
5 if mod(n, iter_round) == 0 then
6 - round x; (Section 4.4)
7 end
8 end
9 - update display with fixed x; using Algorithm 2 (Section 4.1)

10 end

4. Detailed description of the optimization scheme

In this section, we delve into each step of optimization scheme introduced in Section 3.2. We use
the first-order primal-dual algorithm for updating gray-scale display values (Section 4.1) and
the PALM for updating binary backlight values (Section 4.2). We also discuss exploiting prior
knowledge with PD splitting and a novel rounding scheme.

4.1. Display update via primal-dual algorithm

The optimization problem for the SLM image is very similar to that of light-fields [9–14]. With
fixed x and Eqs. (5) and (7), the optimal presentation of display ur can be found by solving the
following constrained linear least squares problem:

minimize
z

‖Az − b‖2 = minimize
ur

‖AXur − b‖2, s.t . 0 ≤ ur ≤ 1. (8)

Our constrained convex problem can be put into Eq. (2) by taking g, h and K as follows:

f = 0, g(u) = δ[0,1](u), h(v) =
1
2
‖v − b‖2, K = AX. (9)
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We observe that this strategy is similar to that of Ref. [6] using PDHG but the function choice
for the linear composite term is different which enables us to avoid calculating the inverse operator
of the form (I + αATA)−1 [33]. In this method, the linear operators are applied explicitly without
any inversion. Also, we simply derive the proximal operator of g and h as follows:

proxγg(u) = P[0,1](u) = min(max(0, u), 1), (10)

proxδh(u) = (u + δb)/(1 + δ). (11)

With the Moreau’s identity: proxδh∗ (u) = u− δproxh/δ(u/δ), we update u by taking the first step
of the primal-dual algorithm without its over-relaxation step, following Algorithm 2.

Algorithm 2: Display update using the primal-dual algorithm
1 function Update_display(SLM image un, backlight image xn)
2 - calculate K with A and xn using Eqs. (7) and (9);
3 - v← proxδh∗ (δKun);
4 - un+1 ← proxγg(un − γKTv);
5 return un+1;

4.2. Backlight update via non-convex optimization

Here, we propose a novel optimization scheme for finding optimal binary sequences for DMD,
inspired by recent works in discrete tomography [20–22]. We formulate the binary optimization
problem as a non-convex minimization problem by adding a binary error term, to have the
backlight values converged to binary values during the iteration. To this end, we apply the
PALM [37] and the three-operator splitting scheme using the primal-dual algorithm [35].
As in Section 4.1, we can derive the inverse problem of optimizing for the binary backlight

value x with fixed u and a new pseudo-projection matrix K = AU ∈ Rk2N2×MN2 :

minimize
z

1
2
‖Az − b‖2 = minimize

x

1
2
‖Kx − b‖2, s.t . x ∈ BMN2

. (12)

Note that the set BMN2 is not convex. Consequently, many algorithms from convex optimization
that can be adopted on optimizing other displays cannot be used directly for this problem [2,6–15],
yet our previous work uses SART and a tailored rounding technique (Section 4.4). In that case,
as expected, there is a dominant degradation in performance because it must be rounded at the
end (see Fig. 3). Finding a binary solution for the problem of the large size typically requires
relaxation such as linear or semidefinite programming relaxation [17, 40].
To begin with, we conceive a relaxation for Eq. (12) based on the constraints x ∈ [0, 1]MN2

with the minimum squared distance between x and BMN2

d(x,BMN2
) := min

w∈BMN2
‖x − w‖2 =

MN2∑
i=1

min
wi ∈B
(xi − wi)

2. (13)

Note that this distance can be regarded as an additional functional for optimization, enforcing
binary solution. For the error formulation, instead of finding optimal w for Eq. (13), we add
an auxiliary binary coefficient matrix Y ∈ BMN2×2 considering all the cases of square term
Y2
ik
(xi − wi)

2 for wi = 0, 1. We only "turn on" Yik at the smaller square term in the row so that
the sum of each row in Y is unity. With an optimal Y ∈ SB, we can rewrite Eq. (13) as follows:

Ebinary(x,Y) := d(x,BMN2
) = min

Y∈SB

2∑
k=1

MN2∑
i=1

Y2
ik(xi − Bk)

2. (14)
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Here, Bk , which is another representation of w, denotes the kth element of B: B1 = 0,B2 = 1. If
we relax Y from SB to S[0,1], Y can be considered as a new optimization variable we can handle
in continuous domain, existing on a standard simplex with the implication of the probability that
the corresponding xi takes the value of unity. It is shown that if and only if x is an element of
BMN2 , the optimal Y is an element of SB [21]. Now we consider Ebinary(x,Y) as our binary
error formulation. This objective functional ensures smooth coupling of x and Y for numerical
optimization. We refer to Ref. [21] for a thorough analysis on this error term.
Finally, we combine the coupling term, given by Eq. (14), a constraint on Y ∈ S[0,1], and the

original data fidelity term, given by Eq. (12). This results in a non-convex optimization problem
with respect to (x,Y).

E(x,Y) :=
1
2
‖Kx − b‖2 + δ[0,1](x)︸                        ︷︷                        ︸

F(x)

+ δS[0,1](Y)︸    ︷︷    ︸
G(Y)

+
α

2

2∑
k=1

MN2∑
i=1

Y2
ik(xi − Bk)

2

︸                          ︷︷                          ︸
H(x,Y)

. (15)

With modeling F, G, and H of Eq. (3) as Eq. (15), we minimize this non-convex function using
PALM as illustrated in Algorithm 3, and derive the proximal operator of F and G as

proxτF (p) = argmin
x

1
2τ
‖x − p‖2 +

1
2
‖AUx − b‖2 + δ[0,1](x), (16)

proxσG(Q) = PS[0,1] (Q). (17)
We refer to Ref. [41] for the efficient evaluation of Eq. (17). However, Eq. (16) cannot be derived
as an analytic form without using an inversion. Thus, we numerically compute the proximal
operator of F using the three-function splitting scheme [35] (Algorithm 4), with modeling f , g,
h of Eq. (2) as

f (x) =
1
2τ
‖x − p‖2, g(x) = δ[0,1](x), h(y) =

1
2
‖y − b‖2, K = AU. (18)

When 1/τ = 0, it reduces to the optimization problem in Section 4.1.
Algorithm 3: Backlight update using PALM
1 function Update_backlight(backlight image xn, dual variable Yn, SLM image un)
2 - calculate K with A and un using Eqs. (6) and (12);
3 - τn ← 1/(αn maxi

∑2
j=1 Yi j);

4 - xn+1 ← proxτnF (xn − τn∇xH(xn,Yn));
5 - σn ← 1/(αn maxi,k(xi − Bk)2);
6 - Yn+1 ← proxσnG

(Yn − σn∇YH(xn+1,Yn));
7 return xn+1,Yn+1;

Algorithm 4: Proximal operator using primal-dual three-operator splitting [35]
1 function proxτF (p)
2 start with any (x0, y0);
3 while stop criterion is not met (Section 5) do
4 xn+ 1

3
← xn − γ∇ f (xn);

5 yn+1 ← proxδh∗ (yn + δKxn);
6 xn+ 2

3
← proxγg(xn+ 1

3
− γKTyn+1);

7 xn+1 ← 2xn+ 2
3
+ γ∇ f (xn+ 2

3
) − γ∇ f (xn+ 1

3
);

8 end
9 return xn+1;
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4.3. Total variation regularization via primal-dual splitting

Since the number of decision variables comes from tens of focal planes, the backlight optimization
problem is ill-posed and solving it possibly yields multiple solutions. In this sense, it is
reasonable and even desirable to constrain the solutions through regularization with the help of
prior knowledge, from the perspective of compressive sensing [42]. We use the total variation
(TV) regularization (`1-norm of the 2D gradients) [31], which has been widely used in image
processing and reconstruction. We derive the gradient operator ∇ in the discrete setting for
tomographic displays, combining 2D differential operators for each layer. It is not burdensome to
implement this regularization because only proxγF (p) is changed when adding the TV functional:

proxτF (p) = argmin
x

1
2τ
‖x − p‖2 +

1
2
‖AUx − b‖2 + δ[0,1](x) + λ |∇x|1. (19)

It can be minimized by applying PD-split scheme [30] to Algorithm 4, updating K = [AU;∇];
y = [y1; y2]; and h(y) = [h1(y1); h2(y2)] = [

1
2 ‖y1 − b‖2; λ |y2 |1] in Eq. (18). We demonstrated

the performance of the regularization in Appendix (Fig. 11).

4.4. Energy-preserving rounding scheme

Of course, our relaxed model in Eq. (15) will not deliver a binary solution while it is promising
that it would results in much better performance than previous models which do not consider
the binary penalty. The most straightforward solution to this problem is to conduct rounding
operation at the end. In this work, we use a slightly more tailored rounding strategy, dubbed
energy-preserving rounding (EPR), as we observe that the disparity of total energy at each
position between before and after rounding is the main factor that degrades performance. This
rounding scheme maintains the total energy of ray from each pixel to the greatest extent possible.
A similar idea was used in occlusion blending [2] and we revisit and extend the idea with a simple
formula here.

Specifically, we reshape the backlight vector x to N × N × M tensor X, to get a rounded sum
of voxels at the same position si j = [

∑M
m=1 Xi jm]. Then, the EPR function simply become the

projection onto a set S:

epr(X) = PS(X),S = {W|si j =
M∑
m

Wi jm and Wi jm ∈ B, for 1 ≤ i, j ≤ N, 1 ≤ m ≤ M}. (20)

It can be implemented easily by sequentially compensating the energy after rounding off. Note
that this concept can be extended to include a focal stack Z = C ◦ X, where C denotes an RGB
image tensor. The coefficient C can be omitted in the tomographic display setup since the RGB
image is identical throughout the focal stack.

5. Results

In this section, we evaluate and compare our method with previous approaches. We report
metrics such as the peak signal-to-noise ratio (PSNR), HDR-VDP-2 [43] as well as structural
similarity index (SSIM) [44] for both perceptual and quantitative comparisons. Next, we validate
the performance with our prototype display.
Our simulation was configured as an 80-layer focal stack within 5.5D and 0.0D to fit in with

the prototype of [2]. We use our optimization framework to obtain optimal pupil-view images
for four scenes with different specifications, shown in Fig. 4. For target images from 7 × 7
viewpoints within a 6mm × 6mm exit-pupil, we rendered scenes with various depth-of-fields,
field of views, and resolutions using Blender. It is reported in Table 1.
We implemented our non-convex solver based on Section 4. Binary blending and occlusion

blending are implemented as described in [2] and its Supplementary Information. We are also
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Table 1. Specification of rendered scenes
Scene Field of View (°) Resolution (pixels) The range in which the object lies

A 10°× 10° 400 × 400 1.0D ∼ 3.4D

B 20°× 20° 350 × 350 0.0D ∼ 4.0D

C 30°× 30° 400 × 400 0.0D ∼ 5.5D

D 30°× 30° 400 × 400 0.0D ∼ 4.0D

inspired to address the artifact issue at the boundary by taking the primary idea of DART [20],
reducing the number of variables by fixing non-boundary pixels. We implemented a DART-based
solver and described its details in the Appendix. All codes are implemented in MATLAB and
are run on a 3.5 GHz E5-1620 64-bit Intel Xeon CPU with 128GB of RAM.
In summary, all solvers can be represented as Algorithm 1. For both occlusion blending and

DART-based blending, we used SART for Update_display and algorithms in the Appendix for
Update_backlight step. We employed max_iter_backlight = 90, max_iter = 100, iter_round =
30. For the PALM-based blending, they were set to 45, 50, and 15, respectively. The non-convex
solver also uses 200 iterations for the proximal splitting in each of the PALM iterations. In
addition, we exploit the primal-dual residuals [45] for the stopping criterion of evaluating
proxγF (p) in Algorithm 4. The primal-dual algorithm is stopped when the normalized sum of
the residual is less than ε . As calculating the residual is computationally taxing, we checked it
every 10th iteration.

In this paper, we used a single parameter setting to demonstrate our performances for the four
scenes: t, M, ε , and λ are 24, 80, 10−5, and 3, respectively. α is incremented from 0.1 to 80
quadratically during 45 iterations. γ and δ are chosen based on Eq. (21). While we have found
this single parameter setting to be sufficient to obtain superior performances for the four scenes
with various scene geometry, the optimal values for the parameters would be affected by many
factors including the number of layers, object geometry, texture, etc. Further research is needed
to investigate the optimal values for these parameters. In Section 6, we have some discussions
about the choice of these parameters.

5.1. Simulation results

Table 2 summarizes the quantitative evaluations of the approaches. We measured PSNR and
SSIM for reconstructed focal stacks on four scenes. Our method outperforms previous methods
both in perceptual and quantitative figures. However, the increase in quality comes at a cost of
much greater computation: Since the non-convex method performs hundreds of iterations of
primal-dual algorithms as a sub-routine for evaluating proxγF (p), it takes nearly ten times longer
than previous methods. We report the runtime of each method in Table 2.

Table 2. Average PSNR (dB) and SSIM of different optimization methods for tomo-
graphic displays on four scenes. We initialized values based on the RGB-D image from
the center viewpoint.

Binary Blending Occlusion Blending DART-based PALM-based

PSNR (dB) 27.4534 34.0980 33.1165 36.1777

SSIM 0.9012 0.9593 0.9552 0.9705

Runtime (s) < 1 8.14 × 103 1.06 × 104 9.12 × 104

Yet, note that the existing method has a fundamental problem of not converging into binary
values as shown in Fig. 3. This hinders them from reaching the same performance of our method.
Moreover, the problem of optimizing the backlight is ill-posed because the dimension of decision
variables is too large. Thus, when using the gradient-based methods, it seems to be confined in
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Fig. 3. Comparison on convergence rate with various blending techniques. Averaged PSNRs
over 80 focal planes between 0.0D to 5.5D on scene A are evaluated after each iteration. We
plot two graphs according to the initial condition based on (a) the RGB-D image and (b)
uniform gray-level of 0.5. The continuous backlight values, which are representd as solid
lines, are rounded using EPR after the 90th iteration. The dashed lines indicate PSNRs
rendered with backlights after EPR at each iteration whereas the dotted lines represent
roughly rounded ones.

the initial condition (see Figs. 12 and 13 in Appendix) [2]. As a result, our method can use at
least 20 times less iteration than the previous method to achieve a similar performance.
Figure 3 demonstrates the convergence and robustness of our method. We rendered a focal

stack with an intermediate display image and binary sequence after each iteration step and
evaluate its average PSNRs on scene A. Note that the intermediate rounding operations are
omitted here. SART-based algorithms do not lead backlight values to an integer, thus the effect
of rounding operation is dominant in their performance. More importantly, they work poorly
when initial conditions are roughly given as shown in Fig. 3(b). With our proposed method,
the penalty caused by rounding at the 90th iteration is significantly decreased with any initial
condition, leading to higher performance.
As illustrated in Fig. 4, we use the visual metric HDR-VDP-2 to compare the perceptual

performance. We report the results of our methods and of three other blending methods for four
scenes. For all scenes, our non-convex method gives better results than other methods, reducing
boundary artifacts, and achieving higher metrics.
Figure 5 shows retinal images and insets of scene A. Our method recovers the imagery with

the highest accuracy, and other methods tend to generate blurrier images as well as incorrect
boundaries.

5.2. Experimental results

Figure 6 shows experimental results photographed from our prototype display used in Ref. [2] and
corresponding simulation results. In addition to our simulations, it highlights the performance of
our proposed method. As shown in the insets, the PALM-based method recovers the scene close
to the ground truth, whereas other methods tend to generate artifacts, such as a glare around
boundaries. This is because the workhorse of SART-based optimization methods is that for
SLM image, not for backlights. Those gradient-based methods have limited ability to optimize
backlight of 80 planes, thus it forces SLM image to have white artificial bands at boundaries to
compensate the boundary artifacts (see also Figs. 12 and 13 in Appendix).
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Fig. 4. Comparison of the HDR-VDP-2 metric for different blending methods applied to
various scenes. We average the metric over the depth range on the right side. The colormaps
correspond to the probability of detection of differences between reconstructed and original
ground truth focal stacks. The boundary artifacts are significantly decreased in PALM-based
method. The numbers on the right side denote the number and range of focal slices used for
each scene, according to Table 1. (Source image courtesy: "Interior Scene" and "SimplePoly
Urban", www.cgtrader.com)

Fig. 5. A reconstructed focal plane of scene A at 1.81D (top) and insets (bottom). The
average PSNR is calculated from 80 synthesized retinal images within 5.5D and 0.0D. Insets
highlight that our PALM-based algorithm recovers the 3D scene with the highest accuracy
and correct occlusion boundaries (red arrows).
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Fig. 6. Comparison of experimental and simulation results from our prototype display with
various blending methods on (a) scene B and (b) scene C. We captured the scenes with a
CCD camera, of which focal distances are denoted at the top left.

6. Discussion

6.1. Parameters

One of the notable points about the PD algorithm is that it can be accelerated under certain
circumstances and parameters [32]. Basically, we can accelerate it by updating the parameters
every iteration, yet it needs to calculate the norm of the linear operator precisely and efficiently.
Alternatively, we use the diagonal preconditioning technique to avoid slow convergence speed [46],
by setting γ and δ as follows:

γ = [γ1, · · · , γMN2 ]
T , δ = [δ1, · · · , δk2N2 ]

T , for γj = (
k2N2∑
i=1

Ki j)
−1, δi = (

MN2∑
j=1

Ki j)
−1. (21)

We use these parameters in a vector with element-wise multiplication. Note that this kind of
step-size setting is similar to the tactic used in SART [11].

Determining the coefficient of the coupling term H(x,Y) in Eq. (15) plays a significant role in
yielding optimal results for our method since it determines a step-size as well as a tendency of
the result towards binary values. When α is sufficiently small, our method would converge into
an optimal solution quickly with enough step-size, yet it would not lead them to binary values.
On the other hand, with large constant α, it is at risk of being stuck in local minimum while
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Fig. 7. Optimizing the coefficient of H(x,Y). (a) Averaged PSNR over 80 focal planes
between 0.0D and 5.5D is evaluated, as a function of initial and final values of α (αi and
αf , respectively), for scene A. (b) For the points that arrows are pointing, we plotted a
convergence graph. The dotted lines denote the metrics of focal planes rendered with
rounded binary backlight each iteration using EPR, thus can be interpreted as the effective
PSNR during optimization. Here, we used resized images of 128 × 128 resolution with a
simple GPU-based implementation and without intermediate rounding operations.

more enforcing binary values. Thus, it is intuitive to gradually increase α during the iteration,
intending to make the coupling term active through an increasing sequence of α.

In Fig. 7(a), we report the performance of our method as a function of the initial value and the
final value of α on scene A. As expected, increasing α results in the best performance. Also, we
note that a similar analysis was performed in binary tomography regarding an upper bound and
the varying sequence of the coefficient [22]. While our method differ slightly from theirs, we
observe that there is the upper bound around α = 120. Figure 7(b) demonstrates that the growing
sequence of α is beneficial by taking each advantage at the beginning and the end.

6.2. Dependence of layers and brightness

Fig. 8. (a) Insets of scene D at 0.35 diopters, using binary blending method and PALM-based
blending with β = 0.1, 0.4 and M = 80. In binary blending, by turning on pixels on adjacent
planes, the boundary artifacts are mitigated (orange box) whereas details are blurred (purple
box). (b,c) Trade-off relationship in designing tomographic displays with the two methods.
averaged PSNR over 80 focal planes is evaluated as a function of the number of layers M
and brightness β for scene D and the parameters in Section 5.

One of the main benefits of our algorithm is to give a new perspective on the brightness of the
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display. We can obtain the brightness scale β ∈ [0, 1] by dividing the illumination time t, which
is applied to the target light field, by the number of focal layers M . Tomographic displays show a
distinct feature in terms of brightness due to the discontinuous nature in its backlight. While
conventional multilayer displays yield higher-quality reconstructions with lower brightness [12],
in tomographic displays, the optimal point of design space is shifted to higher brightness because
longer illumination gives more leeway to rendering algorithms with respect to the arrangement
of binary voxels. When it comes to the binary blending, if we turn on adjacent planes, we can
mitigate the artifacts at boundaries, resulting in higher PSNR to some extent, but blurring details
as shown in Fig. 8(a).
In Figs. 8(b) and 8(c), we explore the trade space of tomographic displays. To do so, we

evaluate average PSNR of the reconstructed focal stack as a function of the number of layers M
and brightness β. As can be seen, rendering algorithms alter the design trade space. In general,
increasing the number of layers yields higher performance for the same brightness while the
optimal brightness of our algorithm gets lower as the number of layers increases (dotted line).

6.3. Depth error analysis

Optimized backlights may float some pixels on wrong depths which can cause depth error. Even
though this kind of error can occur deliberately by the algorithm to reduce other artifacts and
to improve image fidelity, we demonstrate the depth error is negligible. Human visual system
perceives the depth of objects as where the peak contrast of frequency components appears [47].
To find the peak, we cropped patches from a focal stack and collected the signals of 4 to 8 cycles
per degree as a function of accommodation distance from Fourier transformed images. The
signals are then normalized by the components obtained from the ground truth images. In Fig.
9, we plot the retinal contrast ratio for a range of distances. For the patch with flat depths, our
algorithm shows robustness for presenting accurate depth information. Moreover, even in other
fragments, which include very far objects and occlusion boundaries, the contrast produced by our
algorithm behaves very close to that of the ground truth and thus enables the viewer to drive the
correct accommodation response as well.

Fig. 9. Retinal contrast as a function of accommodation distance. Normalized contrast ratio
is obtained for spatial frequency of 4, 6, and 8 cycles per degree (cpd) with samples collected
within 1 cpd interval. The vertical dotted line indicates average depth of the patch based on
depth-map.
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6.4. Application on other displays: voxel-oriented decomposition

Fig. 10. Application of our non-convex method on the display proposed by Rathinavel et
al. [3] for scene D. (a) Insets demonstrate that the PALM based method can correct boundary
artifacts as well as color distortions. (b) Voxel-oriented decomposed images. We show
images for their system without and with optimization. Note that higher brightness (t = 5)
can be achieved with our method.

Our binary optimization solver can be applied to other systems that harness hardware with
binary nature, such as DMD or binary masks. For example, recently, Rathinavel et al. [3] have
proposed volumetric near-eye display with an extended depth-of-field using HDR LEDs. They
change HDR RGB image sequentially, to support the direct digital synthesis (DDS). Their system
can be optimized easily with our framework: We manipulate a fixed translation matrix TRGB with
the fixed u for their DDS decomposition for each RGB color. Then, the optimization problem
reduces to the much easier problem of optimizing for binary pattern x. Namely, its optimization
problem is the same as the problem in section 4.2 when we replace U in Eq. (6) with TRGB.
To demonstrate our framework, we configured 280 planes between 0.15D and 6.7D and

implemented their rendering pipeline as described in Ref. [3]: Color voxels are decomposed to
binary voxels based on its depth-map. In Fig. 10, we compared it with our optimized result. For
our solver, we run 10 iterations with the extended EPR, and use α incremented from 10−4 to 0.5,
t = 5, and λ = 0.3. The raw voxel-oriented decomposition also shows boundary artifacts, which
can be corrected with our framework as shown in Fig. 10.

7. Conclusion

With the presented work, we take the first steps towards obtaining an optimal binary pattern in
tomographic displays. We have introduced a non-convex optimization method with the relevant
algorithmic framework including proximal splitting, TV regularization, and a tailored rounding
technique. We have demonstrated high-fidelity reconstructions both in simulation and with an
experimental prototype display. Without requiring fine-tuned initial conditions for optimization,
it also yields stable and versatile solutions for other displays with binary representation. However,
we still have a long way to go real-time application for these displays. We hope that our
formulation will inspire future approaches such as learning-based algorithms toward real-time
applications.
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Appendix

Partial gradients: Eq. (22) shows partial gradients of the coupling term H(x,Y) in the Algorithm
3.

(∇xH(xn,Yn))i = α

2∑
k=1

Y2
ik(xi − Bk), (∇YH(xn,Yn))ik = αYik(xi − Bk)2. (22)

Blended binary backlight sequences and RGB image: In Figs. 12 and 13, we show blended
RGB image and binary backlight sequences on scenes B and C, used for the comparison.
Algorithms for updating backlight: Algorithms 5 and 6 describe the backlight update scheme
used in occlusion blending and the DART-based solver. For DART, we use p = 0.5 and a Gaussian
smoothing filter of radius 0.1, while more tailored parameter engineering can be adopted. See
Refs. [12, 20, 35] for more details.

Fig. 11. Rendered focal slices at 2.85D using the PALM-based method with λ = 0 and 3, on
scene D. It demonstrates the effect of the TV regularization. By penalizing 2D gradient of
backlight image, sparse backlights are obtained (bottom row) and the noises are suppressed
(arrows). .

Algorithm 5: Backlight update using SART [12,27]
1 function Update_backlight_using_SART(xn, un)
2 - calculate K with A and un using Eqs. (6) and (12);
3 - γj ← (

∑k2N2

i=1 Ki j)
−1 f or j = 1, · · · , MN2;

4 - δi ← (
∑MN2

j=1 Ki j)
−1 f or i = 1, · · · , k2N2;

5 - xn+1 ← xn − γ ◦ (KT (δ ◦ (Kxn − b)));
6 return xn+1;
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Fig. 12. (a) Binary, (b) occlusion, (c) DART-based, and (d) PALM-based blended RGB
image and binary backlight sequences for tomographic displays on scene B

.

Fig. 13. (a) Binary, (b) occlusion, (c) DART-based, and (d) PALM-based blended RGB
image and binary backlight sequences for tomographic displays on scene C

.
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Algorithm 6: Backlight update using DART [20]
1 function Update_backlight_using_DART(xn, un)
2 - xn ← Update_backlight_using_SART(xn, un);
3 - obtain segmented image sn = EPR(xn); (Section 4.4)
4 - get free pixels fn to update from (p, sn);
5 - yn ← fn ◦ xn + (1 − fn) ◦ sn;
6 for i = 1, 2, 3 do
7 - update yn using SART, while keeping the pixels not in fn fixed;
8 end
9 - apply a smoothing operation to the pixels of yn in fn;
10 return xn+1 = yn;
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